2962-780X

No URL ">
  •  
  •  
 

Abstract

Building Information Modelling (BIM) has revolutionized the way the construction industry designs, constructs, and manages buildings. Certainly, the utilization of BIM can optimize the usage of materials in a construction project, considering the high level of concrete consumption globally and its significant environmental impact. The implementation of BIM is intended to calculate the volume of concrete and steel material usage in the design process of low-rise buildings with basements, exemplified in this case by a 5-story laboratory hangar with a 1-story basement. The building design is carried out through a two-stage analysis, which involves separating the upper portion from the lower portion of the structure. This analysis procedure is commonly conducted in building design with basements. When designing the lower portion, some practitioners often neglect the lateral soil forces in the global model when designing the column and beam elements, assuming that these forces are sufficiently small and can be accommodated by basement wall reinforcement. In this research, with a shallow basement depth configuration, the study compares the extent of differences in structural dimensions and materials caused by these lateral forces. Significant variations in volume are observed in perimeter columns, primarily due to direct soil loads acting on this area. Additionally, considering the function of these columns as boundary elements for the basement walls, such differences are expected. The application of lateral soil forces on basement walls is determined by the specific basement configuration being designed. This includes assessing whether there are additional walls outside the basement walls, which can be analyzed locally since they are assumed to bear the lateral soil loads occurring. Different analyses yield varying reinforcement and concrete volumes in basement structures, especially between models with and without lateral soil loads, resulting in a 7.73% difference in reinforcement and 4.69% difference in concrete volume.

Bahasa Abstract

Building Information Modelling yang dapat disingkat sebagai BIM, telah merubah dunia konstruksi dimulai dari tahap desain, konstruksi, maupun pasca konstruksi. Tentunya penggunaan BIM dapat mengoptimasi kebutuhan material dari proyek konstruksi, mengingat tingginya penggunaan beton secara global yang mempengaruhi lingkungan. Implementasi BIM digunakan untuk perhitungan volume material beton dan besi yang digunakan dalam proses desain bangunan tingkat rendah dengan basement, yaitu bangunan hanggar 5 lantai dengan 1 lantai basement. Proses desain dilakukan dengan metode analisa dua tahap, dimana dalam metode ini dilakukan pemisahan bagian atas dan bawah struktur. Metode analisis ini sering digunakan dalam proses desain bangunan dengan basement. Saat melakukan desain struktur bawah, beberapa praktisi sering menghiraukan gaya lateral tanah yang bekerja pada dinding basement dalam model global ketika merencanakan konfigurasi elemen kolom dan balok dengan asumsi gaya yang bekerja cukup kecil dan dapat dipikul oleh dinding beton. Dalam riset ini, dengan kasus konfigurasi basement yang cukup dangkal, dilakukan perbandingan dimensi dan penggunaan material yang disebabkan oleh beban lateral tanah yang bekerja. Beberapa perbedaan yang signifikan dijumpai pada area perimeter kolom yang menjadi elemen batas dinding basement. Tentunya pemberian beban tanah pada dinding basement bergantung pada konfigurasi basement yang akan didesain, apakah dijumpai dinding penahan tanah lainnya diluar dinding basement sehingga desain dinding penahan tanah dapat dianalisa secara lokal. Diperoleh hasil yang berbeda dari kedua analisis yaitu dengan beban tanah dan tidak, menghasilkan 7.73% perbedaan pada penulangan, dan 4.69% pada volume beton.

References

Abanda, F. H., & Byers, L. (2016). An investigation of the impact of building orientation on energy consumption in a domestic building using emerging BIM (Building Information Modelling). Energy, 97, 517–527. https://doi.org/10.1016/j.energy.2015.12.135

Abdillah, A. (2020). Perbandingan Pemodelan Dua Tahap dan Satu Tahap Pada Bangunan Tahan Gempa dengan Analisis Interaksi Tanah-Struktur [Thesis]. Institut Teknologi Bandung.

Abediasl, N. (2019). Seismic Resistant Design of Building Structures with Rigid Basement Levels.

Alfredo, Sjah, J., Rarasati, A. D., & Trigunarsyah, B. (2024). Analysis and Design of Irregular Structure using Building Information Modelling Integration. Case Study: Laboratory Tower. E3S Web of Conferences, 517, 05023. https://doi.org/10.1051/e3sconf/202451705023

Allen, M., Chung, N.-C., Tran, A., & Zepeda, D. (2013). Two Stage Analysis: Implementation Challenges. Structures Congress 2013, 2192–2202. https://doi.org/10.1061/9780784412848.192

Brad, H., & McCool, D. (2015). BIM and Construction Management: Proven Tools, Methods, and Workflows. Wiley.

Datta, S. D., Tayeh, B. A., Hakeem, I. Y., & Abu Aisheh, Y. I. (2023). Benefits and Barriers of Implementing Building Information Modeling Techniques for Sustainable Practices in the Construction Industry—A Comprehensive Review. Sustainability, 15(16), 12466. https://doi.org/10.3390/su151612466

Ding, L., Zhou, Y., & Akinci, B. (2014). Building Information Modeling (BIM) application framework: The process of expanding from 3D to computable nD. Automation in Construction, 46, 82–93. https://doi.org/10.1016/j.autcon.2014.04.009

El Hoseny, M., Ma, J., & Josephine, M. (2022). Effect of Embedded Basement Stories on Seismic Response of Low-Rise Building Frames Considering SSI via Small Shaking Table Tests. Sustainability, 14(3), 1275. https://doi.org/10.3390/su14031275

Fanning, B., Clevenger, C. M., Ozbek, M. E., & Mahmoud, H. (2015). Implementing BIM on Infrastructure: Comparison of Two Bridge Construction Projects. Practice Periodical on Structural Design and Construction, 20(4), 04014044. https://doi.org/10.1061/(ASCE)SC.1943-5576.0000239

Gegana, G., & Widjanarso, T. H. (2015). BIM Course development and its future Integration at University of Indonesia and Institute of Technology Bandung, Indonesia. In Proceedings of 9th BIM Academic Symposium and Job Task Analysis Review, Washington, DC, 10–17.

Geraili Mikola, R., Candia, G., & Sitar, N. (2016). Seismic Earth Pressures on Retaining Structures and Basement Walls in Cohesionless Soils. Journal of Geotechnical and Geoenvironmental Engineering, 142(10), 04016047. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001507

Hadi, A. S., Abd, A. M., & Mahmood, M. (2021). Integrity of Revit with structural analysis softwares. IOP Conference Series: Materials Science and Engineering, 1076(1), 012119. https://doi.org/10.1088/1757-899X/1076/1/012119

Khan, M. S., Hiwase, P. D., & Pachpor, D. P. D. (2017). Analysis and Design of Underground Retaining Wall by Using Beam and Column As Buttresses. 3(5).

Khan, S. A., Karray, M., & Paultre, P. (2023). Seismic Behavior of Retaining Walls: A Critical Review of Analytical and Field Performance Studies. Geotechnics, 4(1), 54–77. https://doi.org/10.3390/geotechnics4010004

Kiet, T. T., Kha, T. T., & Thuan, T. C. (2023). Analyzing problematic issues of building information modeling (BIM) implementation by contractors. IOP Conference Series: Earth and Environmental Science, 1226(1), 012002. https://doi.org/10.1088/1755-1315/1226/1/012002

Migilinskas, D., Popov, V., Juocevicius, V., & Ustinovichius, L. (2013). The Benefits, Obstacles and Problems of Practical Bim Implementation. Procedia Engineering, 57, 767–774. https://doi.org/10.1016/j.proeng.2013.04.097

NEHRP Consultants Joint Venture. (2012). Soil-Structure Interaction for Building Structures (NIST GCR 12-917-21). National Institute of Standards and Technology.

Shehzad, H. M. F., Ibrahim, R. B., Yusof, A. F., Khaidzir, K. A. M., Iqbal, M., & Razzaq, S. (2021). The role of interoperability dimensions in building information modelling. Computers in Industry, 129, 103444. https://doi.org/10.1016/j.compind.2021.103444

Sjah, J., Sulistian, R., Rarasati, A. D., & Trigunarsyah, B. (2024). Seismic Assessment of Precast Concrete Hospital Structures Integrated with Building Information Modeling (BIM) in Indonesia. Journal of Civil Engineering Research & Technology, 6(4), 1–7. https://doi.org/10.47363/JCERT/2024(6)161

Syed, E. U., & Manzoor, K. M. (2022). Analysis and design of buildings using Revit and ETABS software. Materials Today: Proceedings, 65, 1478–1485. https://doi.org/10.1016/j.matpr.2022.04.463

Tata cara perencanaan ketahanan gempa untuk struktur bangunan gedung dan nongedung (SNI 1726:2019). (2019). Badan Standardisasi Nasional.

Whitman, R. V., & Liao, S. (1985). Seismic Design of Gravity Retaining Walls.

Share

COinS